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Optimization of composite structures subject to local stress
constraints

Robert Lipton 1and Michael Stuebner

Mathematics Department, Louisiana State University,
Baton Rouge, Louisiana 70803

Abstract. An extension of current methodologies is introduced for optimization of
graded microstructure subject to local stress criteria. The method is based on new multi-
scale stress criteria given by macrostress modulation functions. The modulation functions
quantify the intensity of local stress fluctuations at the scale of the microstructure due to
the imposed macroscopic stress. The methodology is illustrated for long cylindrical shafts
reinforced with stiff cylindrical elastic fibers with generators parallel to the shaft. Exam-
ples are presented for shaft cross sections that possess reentrant corners typically seen in
lap joints and junctions of struts. It is shown that the computational methodology delivers
graded fiber microgeometries that provide overall structural rigidity while at the same time
tempering the influence of stress concentrations near reentrant corners.

Keywords: Stress constraints, optimal structural design

1 Introduction

The high specific stiffness of composite materials makes them attractive structural materials
for use in aerospace applications. These materials are increasingly being used in geometries
that involve abrupt dimensional changes within structural components, such as skins con-
nected to ribs, panel reinforcements and junctions of struts. These geometries contain stress
concentrations and thus present potential sources for structural failure. In this paper we
present a computational design method for grading the microstructure in order to control
local stress in the vicinity of stress concentrations. The method is based upon new rigorous
multiscale stress criteria that connect the macroscopic or homogenized stress to local stress
fluctuations at the scale of the microstructure [25, 26, 27].

It is now well known that effective constitutive properties relating average stress to av-
erage strain can be employed in the numerical design of composite structures for optimal
structural compliance and natural frequency. This type of design problem has received
significant attention from both the applied mathematics and structural optimization com-
munities in the 1980s and 1990s [1, 4, 7, 10, 11, 12, 14, 17, 18, 31, 32, 35]. This list of
references is by no means complete and the reader is referred to the reviews and manu-
scripts [2, 5, 8, 9, 19, 30, 33, 37]. The associated body of methods are referred to as the
homogenization approach to structural optimization. These treatments have focused on the
design problem in the absence of stress or strain constraints.

1Corresponding Author: E-mail address: lipton@math.lsu.edu, Phone:+1-6176-538782, Fax:+1-2255-

784276
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Recent efforts have initiated the development of numerical methods for structural op-
timization in the presence of stress constraints. The investigation given in [13] provides a
numerical method for the stress constrained minimum volume design problem. The method
is carried out using an empirical model that is an extension of the power penalized stiffness
model also known as the Solid Isotropic Microstructure with Penalization (SIMP) model
[5]. The choice of local stress constraints proposed in [13] is motivated by the explicit
form of the corrector tensors associated with rank two orthogonal laminar microstructures.
Other work has extended the numerical methodology providing the opportunity for design
of composites and topology in the presence of mean square stress constraints. The prob-
lem of mean square stress constrained structural optimization for fiber reinforced shafts is
taken up in [20]. In that work a numerical algorithm is developed based on a suitable ho-
mogenized quantity (the covariance tensor) that accurately encodes the mean square stress
constraints. The work of [3] introduces a partial relaxation for topology optimization for
minimum mean square stress using finite rank laminates. The rigorous theoretical con-
text behind the homogenization approach to mean square stress (or gradient) constrained
structural optimization has been worked out in [23], [24]. Other recent theoretical and nu-
merical developments have addressed problems of minimizing objective functions depending
explicitly on the mean square norm of the gradients of the state variable [15, 22, 34, 36, 38].

In this treatment we consider design problems that require point wise constraints on
the local stress. Suitable multiscale quantities beyond effective constitutive laws are used
to accurately enforce local stress criteria. These quantities dubbed macrostress modulation
functions are introduced in [25, 26, 27]. The design formulation given here is expressed in
terms of a homogenized design problem that satisfies two requirements: The first is that the
homogenized design problem is computationally tractable. The second is that the solution
of the homogenized design problem provides the means to identify graded microstructures
that deliver the required structural response while at the same time provide local stress
control. The approach put forth in this paper is in essence an inverse method that uses new
tools from homogenization theory to identify optimal graded microgeometries. Because of
this we will refer to it as an inverse homogenization design method. The rigorous theoretical
basis for this approach is given in [21] and [29].

To illustrate the ideas this article treats the problem of reinforcement of a long shaft with
constant cross section subjected to torsion loading. The microstructure within the shaft
consists of long reinforcement fibers of constant cross section with isotropic shear modulus
Gf embedded in a more compliant material with shear modulus Gm. The shaft together
with the fibers are right cylinders with generators along the x3 axis. The cross section of
the reinforced shaft is specified by the region Ω in the x1−x2 plane. In the neighborhood of
any point x = (x1, x2) the local microgeometry is given by a periodic geometry with period
cell filled with the Hashin Shtrikman coated cylinder assemblage [16], see Figure 1. The
characteristic length scale of the period relative to the size of the design domain is taken
to be small and is denoted by ε. The coated cylinder assemblage corresponds to stiff fibers
of circular cross section separated by compliant matrix material. The local area fraction of
the fiber phase is given by θf and the matrix area fraction is given by θm with θf + θm = 1.
The graded material properties of the shaft are obtained by changing the local area fraction
of fibers across the cross section of the shaft see Figure 1.

In what follows a constraint is placed on the total cross-sectional area occupied by the
fibers. The goal of the design problem is to identify a graded distribution of fibers across
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the cross section such that the following requirements are met:

I. The reinforced shaft has a torsional rigidity that is acceptable.
II. The magnitude of the local point wise stress inside the composite is controlled over a
designated subset of the cross section.

In Section 2 we describe a suitably formulated homogenized design problem that allows for
the easy identification of fiber reinforced designs satisfying requirements (I) and (II). The
homogenized formulation makes use of a multiscale stress criterion given in terms of the
macrostress modulation function. The physical motivation for the multiscale stress criterion
is presented in Section 2. The local effective properties and macrostress modulation func-
tion used to formulate the stress criterion are computed explicitly for the Hashin Shtrikman
coated cylinder assemblage in [26]. These are given in terms of the elastic moduli of the
matrix and fibers and the local area fraction of fibers. We point out that the coated cylin-
der assemblage gives the minimum amount of stress amplification among all periodic fiber
microstructures with isotropic effective shear compliance [28]. A gradient based numerical
implementation of the inverse homogenization design method is described in Section 3. In
Section 4 computational results are given for the “X” shaped shaft cross section. This geom-
etry typifies the junctions between composite substructures and possesses reentrant corners
seen in lap joints and junctions of struts. We conclude by noting that the theoretical basis
for the approach given here has been established for three dimensional structural design
using multiphase locally periodic composites in the presence of point wise stress constraints
see ([21], Theorems 5.1 and 5.2). For locally layered microstructures the corresponding
theory is presented in [29].

2 Homogenized design formulation and identification of op-

timal graded fiber microgeometries.

The inverse homogenization design method is a top down design approach. First a well
posed homogenized design problem is developed. This design problem is given in terms of
design variables that reflect the local microgeometry inside the composite. For the problem
treated here the design variable for the homogenized design problem is given by the density
function θf (x). The homogenized design problem is then solved to obtain an optimal
density function. With the optimal density in hand we use it to recover an explicit graded
fiber design that has structural properties close to that of the optimal homogenized design
and satisfies prescribed point wise stress constraints. The homogenized design problem is
described in the first subsection. The explicit link between homogenized designs and graded
fiber reinforced designs that satisfy point wise stress constraints is provided in the second
subsection.

2.1 Homogenized design problem

The design variable for the homogenized design problem is given by the density function
θf (x). This function is interpreted as providing the local area fraction of the fiber phase in
a homogenized design. The resource constraint on the fiber phase is given by

∫

Ω

θf (x) dx1dx2 ≤ Θ × (Area of Ω), (2.1)
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where 0 < Θ < 1. At each point the local area fraction satisfies the box constraint given by

0 ≤ θf ≤ 1. (2.2)

In this treatment the local fiber area fraction θf changes continuously with position accord-
ing to the condition

|θf (x) − θf (x + h)| ≤ K|h|. (2.3)

Here the constant K is prescribed by the designer. The universe of admissible designs given
by all local area fractions θf satisfying the resource constraint, box constraints, and (2.3)
is denoted by DΘ.

The compliance in shear for the matrix and fiber are given by Sm = (2Gm)−1 and
Sf = (2Gf )−1 respectively. Here the matrix is more compliant and Sm > Sf . The effective
shear compliance SE(θf ) for the Hashin Shtrikman coated sphere assemblage made from
stiff fibers with area fraction θf is given by [16]

SE(θf (x)) = Sm

(

Sm + Sf + θf (x)(Sf − Sm)

Sm + Sf + θf (x)(Sf + Sm)

)

. (2.4)

The macroscopic stress potential φH vanishes on the boundary of the shaft cross section
and satisfies

−div
(

SE(θf )∇φH
)

= 1 (2.5)

inside the cross section. The torsional rigidity for the homogenized shaft cross section made
from a homogenized material with compliance SE(θf ) is given by

R(θf ) = 2

∫

Ω

φH dx1dx2. (2.6)

The macroscopic stress in the homogenized shaft is given by σH = R∇φH where R is the
rotation matrix associated with a counter clock wise rotation of π/2 radians.

The multiscale stress criterion is given in terms of the macrostress modulation function
introduced in [25]. The macrostress modulation function captures the interaction between
the macroscopic stress σH(x) and the microstructure. Consider the unit square Q filled
with Hashin Shtrikman coated cylinder assemblage with area fraction of fibers θf . The
coordinates of points inside the unit square are denoted by y. The associated local shear
compliance inside the unit square is denoted by S(θf ,y). Here S(θf ,y) = Sf in the fiber
phase and S(θf ,y) = Sm in the matrix phase. In what follows all derivatives with respect
to the microscopic variable y are denoted with subscripts. The microscopic response to the
imposed macroscopic stress is given by σ(x,y) = R[∇y(w(x,y))+∇φH(x)], where for each
x in the shaft cross section Ω the Q periodic fluctuating stress potential w(x,y) solves the
microscopic equilibrium equation

−divy

(

S(θf (x),y)(∇y(w(x,y)) + ∇φH(x))
)

= 0, y in Q. (2.7)

Here the x coordinate appears as a parameter. The relevant interaction is described by the
macrostress modulation function f(θf , σH) given by

f(θf (x), σH(x)) = sup
y in Q

{

|σ(x,y)|2
}

. (2.8)
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Physically the macrostress modulation provides an upper envelope on the oscillating point
wise local stress in the composite [25], [26].

The macrostress modulation is calculated explicitly for the Hashin Shtrikman coated
cylinder assemblage in [26]. We define the amplification factor

A(θf ) =

(

2Sm

Sm + Sf + θf (Sm − Sf )

)2

(2.9)

and set

f(θf ,v) = A(θf )|v|2 if θf > 0 and f(θf ,v) = |v|2, if θf = 0 (2.10)

for every vector v. Here A(θf ) ≥ 1 and A(0) = (2Sm/(Sm + Sf ))2 > 1. In the context of
torsional rigidity the macrostress modulation is written in terms of the homogenized stress
potential and is given by

f(θf (x),∇φH(x)). (2.11)

It is pointed out that the Hashin Shtrikman coated cylinder assemblage gives the smallest
amplification factor A(θf ) among all locally periodic fiber microstructures with isotropic
effective shear compliance [28].

We choose a subset S of the shaft cross section that lies a finite distance away from the
boundary. On this set the prescribed multiscale stress criterion is given by

f(θf (x),∇φH(x)) ≤ T 2. (2.12)

In this treatment domains with reentrant corners are considered so there will be a stress
singularity at the corner. Therefore the choice of T > 0 depends on the distance between S
and the reentrant corner. It is clear that the multiscale stress criterion may not be satisfied
by any homogenized design if T is chosen too small.

The homogenized design problem is given by

HP =

{

inf {R(θf )} ; subject to:

{

θf in DΘ,
f(θf (x),∇φH(x)) ≤ T 2, for x in S

} }

. (2.13)

The homogenized design problem HP is well posed and there is an optimal design θ̂f

provided T is chosen large enough so that DΘ contains at least one design, see [21].

2.2 Identification of graded fiber design from the homogenized design

In this subsection it is shown how to use the optimal design θ̂f of HP to identify a graded
fiber design satisfying the requirements (I) and (II). The building block for the microstruc-
ture is the unit cell filled with a Hashin Shtrikman coated cylinder assemblage [16]. The
coated cylinder assemblage is constructed as follows. A space filling configuration of disks
of different sizes ranging down to the infinitesimal is placed inside the unit period cell given
by the unit square Q. Each disk is then partitioned into an annulus called the coating and
a concentric disk which is a fiber cross section. The union of these “coated disks” make
up the coated cylinder assemblage. The area fraction of the fiber phase is the same for all
coated disks in the assemblage and is given by θf . The union of the coatings comprises the
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matrix phase. The area fraction of the fiber phase for the coated cylinder assemblage inside
the unit square Q is easily seen to be θf . The unit square filled with the coated cylinder
assemblage is illustrated in Figure 1. A microstructure is obtained by rescaling the unit cell
by the factor ε so that it becomes the period cell for an ε periodic composite.

In order to describe the graded fiber composite one partitions the shaft cross section
Ω into the N subdomains ωk, k = 1, . . . , N and Ω = ∪N

k ωk. The maximum diameter of
the subdomains in the partition is denoted by τN . The partition is denoted by PτN . A
graded fiber composite is constructed by placing an ε periodic Hashin Shtrikman coated
cylinder geometry inside each subdomain ωk. The area fraction of fibers in each subdomain
is given by the constant θk

f and these constants can change between subdomains. For future
reference this type of locally periodic microstructure will be called a (τN , ε)-graded Hashin
Shtrikman fiber microstructure.

The local piecewise constant shear compliance for the (τN , ε)-graded Hashin Shtrikman
fiber microstructure is denoted by Sε,N . The stress potential for this microstructure is
denoted by φε,N and vanishes on the boundary of the cross section. The stress potential
satisfies the equilibrium equation

−div
(

Sε,N∇φε,N
)

= 1. (2.14)

The torsional rigidity of the cross section is given by

Rε,N = 2

∫

Ω

φε,N dx1dx2. (2.15)

The nonzero components of the in plane stress are denoted by the vector σε,N =
(σε,N

13 , σε,N
23 ) and are related to the gradient of the stress potential according to

σε,N = R∇φε,N . (2.16)

Here R is the matrix corresponding to a counter clockwise rotation of π/2 and |σε,N | =
|∇φε,N |.

Given any partition PτN the partition Pτ
N̂ is said to be a refinement of it, if τ

N̂
< τN

and if each subdomain belonging to Pτ
N̂ is a subset of a subdomain in PτN . Next for

any given partition PτN we introduce a nested sequence of refinements {Pτ
N`}∞`=1

such
that Pτ

N1 = PτN and Pτ
N`+1 is a refinement of Pτ

N` with lim`→∞ τN` = 0. Here we
assume ε < τN` and we will consider the sequence of (τN` , ε)-graded Hashin Shtrikman

fiber microstructures with associated stress potentials φε,N`
(x).

The identification of a graded fiber composite satisfying the point wise stress constraints
is given in the following Proposition.

Proposition 2.1. Identification of graded microstructure.

Consider a homogenized design specified by θf in DΘ such that the multiscale stress
criterion (2.12) holds on the subset S of the shaft cross section. Consider also any partition
PτN of the design domain Ω. Then for any given t > T and small number δ > 0, there is a
refinement Pτ

N` of the partition and an associated (τN` , ε)-graded Hashin Shtrikman fiber
microstructure for which the part of S over which the stress constraint

|∇φε,N`

(x)| ≤ t (2.17)
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is violated has measure (area) less than δ and

|Rε,N`

−R(θf )| < δ, (2.18)

and
N`
∑

k=1

|ωk|θk
f ≤ Θ × (Area of Ω) + δ. (2.19)

Here |ωk| denotes the area of ωk. Moreover the area fractions θk
f are determined from θf

through the averages given by

θf
k =

1

|ωk|
×

∫

ωk

θf (x)dx1dx2. (2.20)

This Proposition is established in [21]. The homogenized design formulation together
with Proposition 2.1 provide an inverse homogenization method for identifying microstruc-
tures that satisfy point wise stress constraints while delivering a torsional rigidity close to
that given by the optimal design θ̂f for the homogenized design problem.

3 Gradient algorithm for the homogenized design problem

In the computational examples we enforce the stress constraint by adding a penalty term
to the torsional rigidity and minimize

L(θf ) = −R(θf ) + l

∫

Ω

(f(θf ,∇φH))p dx1dx2, (3.1)

over all θf in DΘ where l > 0 and φH satisfies

−div
(

SE(θf )∇φH
)

= 1 (3.2)

and vanishes at the boundary. The computational examples provided here will be carried
out for a domain with reentrant corners of interior angle 3π/2. In view of the strength of
the associated singularity at the reentrant corners the power “p” appearing in the penalty
term is chosen to be less than 3. This minimization problem is well posed and one can find
a minimizing density θ̂f (x) see [21].

Given the minimizing density and associated stress potential φ̂H one considers sets of
the form

AT = {x ∈ Ω : f(θ̂f (x),∇φ̂H(x)) ≤ T 2} (3.3)

For fixed choices of δ > 0 and t > T Proposition 2.1 can be used to recover a (τ
N̂

, ε)-graded
Hashin Shtrikman fiber microstructure for which the the part of AT over which the stress
constraint

|∇φε,N̂ (x)| ≤ t (3.4)

is violated has measure less than δ,

|Rε,N̂ −R(θ̂f )| < δ, (3.5)
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and
N̂

∑

k=1

|ωk|θ̂k
f ≤ Θ × (Area of Ω) + δ. (3.6)

Here the area fractions θ̂k
f are given by

θ̂k
f =

1

|ωk|
×

∫

ωk

θ̂f (x)dx1dx2. (3.7)

To proceed numerically we compute the derivative of the objective function given by
(3.1) with respect to the design variable θf . The derivative will be used to develop a gradient
minimization algorithm. However we note that the macrostress modulation function (2.10)
is discontinuous at θf = 0. In order to proceed we restrict θf to satisfy the constraint
0 < θmin

f ≤ θf ≤ 1 at each point in the design domain. For our computations we choose

θmin
f = 0.01. For this choice the modulation function is differentiable with respect to the

density and we proceed to develop a gradient method subject to these new constraints.
The gradient of the objective is computed with the help of an adjoint field λ. Here λ is

the solution of

−div
(

SE(θf )∇λ
)

= 1 + l div
(

2p(A(θf )∇φH · ∇φH)p−1A(θf )∇φH
)

. (3.8)

where 1 ≤ p < 3 and λ = 0 on the boundary. For η << 1 the change in the stress potential
φH due to small local perturbations ηθ̃f in the area fraction, is written as φ̃ and

−div
(

SE(θf )∇φ̃
)

= div
(

(∂θf
SE(θf )θ̃f )∇φH

)

(3.9)

where φ̃ = 0 on the boundary. Applying standard arguments using (3.2), (3.8) and (3.9)
one calculates to first order that

4L = η

∫

Ω

∂θf
L θ̃f dx1dx2, where

∂θf
L = ∂θf

SE(θf )∇λ · ∇φH + 2lp(A(θf )∇φH · ∇φH)p−1∂θf
A(θf )∇φH · ∇φH .(3.10)

The continuity constraints on θf (x) expressed by (2.3) are enforced by the way in which
the design variable is initialized and updated. The local average of a scalar function f over
the disk of radius R centered at p is denoted by < f >R (p). For a given field θf satisfying
the resource constraint (2.1) and box constraint θmin

f ≤ θf ≤ 1 the initial choice of design

variable θ0
f is given by

θ0
f = 〈θf 〉

R (x). (3.11)

At the nth step we suppose that θn
f is given and we solve for φH and λ using the system of

equations (3.2) and (3.8). The design variable θn
f is updated according to

θn+1

f =
〈

θn
f − η∂θf

L
〉R

(x) (3.12)

were ∂θf
L is given by (3.10). If the right hand side of (3.12) lies out side the box constraint

θmin
f ≤ θf ≤ 1 we update according to

θn+1

f = θmin
f , if

〈

θn
f − η∂θf

L
〉R

(x) < θmin
f and

θn+1

f = 1, if
〈

θn
f − η∂θf

L
〉R

(x) > 1. (3.13)
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Because the updated functions are given by averages of bounded functions it is easily seen
that they satisfy (2.3) for a non-negative constant K independent of x. The use of local
averaging in the update scheme is similar to the use of filters in topology optimization see
[5] and [6].

For points near the boundary a difficulty arises when defining the averages. This is dealt
with by extending θf to the slightly larger domain ΩR = {x in R

2; dist(x, Ω) ≤ R}. The
particular form of extension is up to the designer. Possibilities include setting θf = 1 in
ΩR \ Ω or reflection of θf across the boundary of Ω into ΩR. In the discretized problem
used for the simulations we allow θf to take constant values inside each element and define

〈θf 〉
R to be the average of θf taken over all neighboring elements.

4 Numerical results for the X-shaped cross section

The computational examples are carried out for an “X” shaped domain. All interior angles
for the reentrant corners are fixed at 3π/2 radians. The shear stiffness of the matrix is
assigned the value Gm = 1 GPa and the shear stiffness of the fiber phase is assigned the
value Gf = 2 GPa. For these choices Sm = 1/(2Gm) = 0.5 and Sf = 1/(2Gf ) = 0.25.
All of the design optimizations are carried out with the matrix material occupying 70% of
the shaft cross section. The local fiber area fraction θf is constrained to lie in the interval
0.01 ≤ θf ≤ 1.

In the first example we optimize for torsional rigidity only. The resulting optimal design
is referred to as design 1. The grey scale plot of the local area fraction of matrix material
θ̂m = 1−θ̂f is given in Figure 2. Here the lightest regions correspond to points where θ̂m = 0.

The darkest regions correspond to points where θ̂m = 0.99. As expected this design ignores
the stress concentration at the reentrant corners and a zone of stiff material surrounds a
more compliant inner core and lies adjacent to the reentrant corners. In the next example
the torsional rigidity is optimized in the presence of an integral penalization

∫

(f)1, i.e.,
p = 1 for the Lagrangian in (3.1). The resulting design is referred to as design 2. The plot
of θ̂m for this design is given in Figure 3. For this case it is seen that there is a topology
change in the design and the more compliant material now surrounds the stiffer material
shielding it from the stress concentration at the reentrant corners. In the final example the
torsional rigidity is optimized in the presence of a stronger integral penalization given by
∫

(f)2, i.e., p = 2 for the Lagrangian in (3.1). The resulting design is referred to as design

3. The plot of θ̂m for this design is given in Figure 4. As in design 2 it is seen that the more
compliant material shields the stiff material from the stress concentration at the reentrant
corners. The associated torsional rigidities for each of these cases are listed in Table 1. It
is seen from the table that the torsional rigidity drops by 44% for the stress constrained
designs.

The contour plot of the macrostress modulation function f for design 1 is given in
Figure 5. Figures 6 and 7 give the contour plots for f in designs 2 and 3 respectively. When
comparing designs 1, 2 and 3 it is clear from Figures 5, 6 and 7 that designs 2 and 3 provide
a significant reduction in the size of the over stressed zone f ≥ 1.

It is pointed out that Proposition 2.1 provides the method for constructing a (τN , ε)-
graded Hashin Shtrikman fiber microstructure from the data given in design 2. To fix
ideas we choose a tolerance δ = 1/1000 and t = 1.001. Then Proposition 2.1 shows how
to construct a (τN , ε)-graded Hashin Shtrikman fiber microstructure with torsional rigidity
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Rε,N satisfying
|Rε,N − 0.204| < 1/1000 (4.1)

and for which the magnitude of the in plane stress lies below 1.001 for all points in the
region f < 1 of Figure 6, with the possible exception of a subset of points of area less than
1/1000.

5 Acknowledgments.

This research effort is sponsored by NSF through grant DMS-0406374 and by the Air Force
Office of Scientific Research, Air Force Materiel Command USAF, under grant numbers
F49620-02-1-0041 and FA9550-05-1-0008. The US Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed
or implied of the Air Force Office of Scientific Research or the US Government.

References

[1] G. Allaire, R.V. Kohn, Optimal design for minimum weight and compliance in plane
stress using extremal microstructure, Euro. J. Mech. 12 (1993) 839–878.

[2] G. Allaire, Shape Optimization by the Homogenization Method, Springer, New York
2002.

[3] G. Allaire, F. Jouve, H. Mallot, Topology optimization for minimum stress design with
the homogenization method, Struct. Multidisc. Optim. 28 (2004) 87–98.

[4] M.P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a
homogenization method, Comput. Methods Appl. Mech. Engrg. 71 (1988) 197–224.

[5] M.P. Bendsoe, O. Sigmund, Topology Optimization, Theory, Methods and Applica-
tions, Springer, Berlin 2003.

[6] B. Bourdin, Filters in topology optimization, Int. J. Numer. Meth. Engng. 50 (2001)
2143–2158.

[7] K.T. Cheng, N. Olhoff, An investigation concerning optimal design of solid elastic
plates, Internat. J. Solids and Structures 17 (1981) 305–323.

[8] A. Cherkaev, R.V. Kohn, Topics in the Mathematical Modelling of Composite Mate-
rials, Progress in Nonlinear Differential Equations and their Applications, Birkhauser,
Boston, 1997.

[9] A. Cherkaev, Variational Methods for Structural Optimization, Springer, New York,
2000.

10



[10] A. Cherkaev, R. Palais, Optimal design of three-dimensional axisymmetric elastic struc-
tures. Structural Dynamic Systems Computational Techniques and Optimization, Gor-
don and Breach Int. Ser. Eng. Technol. Appl. Sci., vol.9, Gordon and Breach, Amster-
dam, 1999, pp. 237–267.

[11] A.R. Diaz, N. Kikuchi, Solutions to shape and topology eigenvalue optimization prob-
lems using a homogenization method, Int. Num. Meth. Eng. 35 (1992) 1487–1502.

[12] A.R. Diaz, R. Lipton, Optimal material layout for three-dimensional elastic structures
subject to multiple loads, Mech. Struct. and Mach. 28 (2000) 219–236.

[13] P. Duysinx, M.P. Bendsoe, Topology optimization of continuum structures with local
stress constraints, Int. J. Num. Meths. Eng. 43 (1998) 1453-1478.

[14] D. Fujii, B.C. Chen, N. Kikuchi, Composite material design of two-dimensional struc-
tures using the homogenization design method, Internat. J. Numer. Methods Engrg.
50 (2001) 2031–2051.

[15] Y. Grabovsky, Optimal design problems for two-phase conducting composites with
weakly discontinuous objective functionals, Advances in Applied Mathematics, 27
(2001) 683–704.

[16] Z. Hashin, S. Shtrikman, A variational approach to the theory of the effective magnetic
permeability of multiphase materials, J. Appl. Phys. 33 (1962) 3125–3131.

[17] C.S. Jog, R.B. Haber, M.P. Bendsoe, Topology design with optimized, self-adaptive
materials, Internat. J. Numer. Methods Engrg. 37 (1994) 1323–1350.

[18] R.V. Kohn, G. Strang, Optimal Design and Relaxation of Variational Problems, Com-
munications on Pure and Applied Mathematics 34 (1986) Part I, 113-137, Part II,
139–182, Part III, 357-377.

[19] T. Lewinski, J.J. Telega, Plates, Laminates and Shells. Asymptotic Analysis and Ho-
mogenization, World Scientific, Singapore 2000.

[20] R. Lipton, Design of functionally graded composite structures in the presence of stress
constraints, International Journal of Solids and Structures 39 (2002) 2575–2586.

[21] R. Lipton, Homogenization and design of functionally graded composites for stiffness
and strength, in Nonlinear Homogenization and its Application to Composites, Poly-
crystals, and Smart Materials, Edited by P. Ponte Castaneda and J.J. Telega, NATO
Science series II Mathematics, Physics, and Chemestry, vol. 170, Springer Verlag,
Berlin, 2004, pp. 169–192.

[22] R, Lipton and A. Velo, Optimal design of gradient fields with applications to electro-
statics, in Nonlinear Partial Differential Equations and Their Applications: College de
France Seminar vol. XIV, Studies in Mathematics and its Applications, North Holland,
Elsevier, 2002, pp. 509–532

[23] R. Lipton, Relaxation through homogenization for optimal design problems with gra-
dient constraints, J. Optim. Theory Appl. 114 (2002) 27–53.

11



[24] R. Lipton, Stress constrained G closure and relaxation of structural design problems,
Quarterly of Applied Mathematics 62 (2004) 295–321.

[25] R. Lipton, Assessment of the local stress state through macroscopic variables, Phil.
Trans. R. Soc. Lond. A. 361 (2003) 921–946.

[26] R. Lipton, Bounds on the distribution of extreme values for the stress in composite
materials, J. Mech. Phys. Solids 52 (2004) 1053–1069.

[27] R. Lipton, Homogenization theory and the assessment of extreme field values in com-
posites with random microstructure, SIAM J. on Appl. Math. 65 (2004) 475–493.

[28] R. Lipton, Optimal lower bounds on the electric-field concentration in composite media,
Journal of Applied Physics 96 (2004) 2821–2827.

[29] R. Lipton, M. Stuebner, Optimal design of graded microstructure through inverse
homogenization for control of pointwise stress, submitted for publication.

[30] K. Lurie, Applied Optimal Control Theory of Distributed Systems, Plenum Press, New
York 1993.

[31] K.A. Lurie, A.V. Cherkaev, Effective characteristics of composite materials and the
optimal design of structural elements, Uspekhi Mekhaniki (Advances in Mechanics) 9
(1986) 3–81.

[32] F. Murat, L. Tartar, Calcul des variations et homogénéisation: Les Méthodes de
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Design # Stress Constraint Matrix-Volume Fraction Torsional Rigidity

1 None 70% 0.368

2
∫

(f)1 70% 0.204

3
∫

(f)2 70% 0.204

Table 1:
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Figure 1: Cross section of shaft filled with a graded locally periodic Hashin Shtrikman
coated cylinder assemblage. The change in the local fiber area fraction across the structure
is illustrated.
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Figure 2: Design 1. Grey scale plot of the area fraction of matrix material inside the X-
shaped shaft cross section optimized for torsional rigidity only. Lightest regions are made
exclusively of stiff fiber-phase material. Darkest regions contain only 1% by area fraction
of fiber phase material.
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Figure 3: Design 2. Area fraction distribution of matrix material inside the X-shaped cross
section optimized for torsional rigidity with p = 1 integral penalty on f .
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Figure 4: Design 3. Area fraction distribution of matrix material inside the X-shaped cross
section optimized for torsional rigidity with p = 2 integral penalty on f .
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Figure 5: Contour plot of f for design 1.
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Figure 6: Contour plot of f for design 2.
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Figure 7: Contour plot of f for design 3.
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